might appear that such errors could frequently be absorbed in the random errors in intensity measurement, it must be noted that they are calculable, systematic errors which can generate measurable effects upon the refined structure. In a particular case where the corrections were applied (Parkes & Hughes, 1963), there resulted not only an improvement in R but also a statistically significant change in the structure.

## References

PARKES, A. S. & HUGHES, R. E. (1963). Acta Cryst. 16, 734.
WASER, J. (1951). Rev. Sci. Instrum. 22, 563.

Acta Cryst. (1963). 16, 1187

# Stereochemistry of Arsenic. X. Tri-*p*-xylylarsine\*

## By J. TROTTER

Department of Chemistry, University of British Columbia, Vancouver 8, B. C., Canada

### (Received 14 January 1963)

Crystals of tri-*p*-xylylarsine are monoclinic, with four molecules in a unit cell of dimensions a = 10.81, b = 33.4, c = 5.72 Å,  $\beta = 96^{\circ} 28'$ , space group  $P2_1/a$ . The structure has been determined from projections along the *a* and *c* axes. Within experimental error the molecule has symmetry  $C_3$ , the arsenic being pyramidal with mean C-As-C angles of 102°, and each ring being rotated about its As-C bond, in the same sense,  $37^{\circ}$  from the position it would occupy in an ideal model with maximum interaction between the lone pair and the aromatic  $\pi$ -electrons. Overcrowded intramolecular distances are thereby increased to the usual van der Waals separations. Values of the bond distances, valency angles and intermolecular contacts have been obtained.

### Introduction

Tri-*p*-xylylarsine has methyl substituents ortho to the arsenic atom, and its structure has been investigated for comparison with that of tri-*p*-tolylarsine, which has no ortho substituents (Trotter, 1963).

### Experimental

Crystals of tri-*p*-xylylarsine are colourless prisms elongated along the *c* axis. The density was measured by flotation in aqueous potassium iodide, and the unit cell dimensions and space group were determined from various rotation, oscillation, Weissenberg (Cu  $K\alpha$ ) and precession (Mo  $K\alpha$ ) films.

Crystal data

Tri-*p*-xylylarsine, C<sub>24</sub>H<sub>27</sub>As; M = 390.4; m.p. 161 °C. Monoclinic, a = 10.81, b = 33.4, c = 5.72 Å;  $\beta = 96^{\circ} 28'$ . Volume of the unit cell=2052 Å<sup>3</sup>.  $D_x$  (with Z=4)=1.256,  $D_m=1.24$  g.cm<sup>-3</sup>. Absorption coefficients for X-rays,  $\lambda = 1.542$  Å,  $\mu = 24$  cm<sup>-1</sup>.  $\lambda = 0.7107$  Å,  $\mu = 17$  cm<sup>-1</sup>. F(000) = 816.

Absent spectra: h0l when h is odd, 0k0 when k is odd. Space group is  $P2_1/a$ .

hk0 (Weissenberg films, Cu  $K\alpha$ ) and 0kl (precession films, Mo  $K\alpha$ ) intensity data were recorded and



Fig. 1. Electron-density projection along the c axis. Contours at intervals of 1 e.Å<sup>-2</sup> (starting at 2) for the C atoms, and 5 e.Å<sup>-2</sup> for the As atom.

estimated visually, and the structure amplitudes derived. No absorption corrections were applied, and the absolute scale was established later by correlation

<sup>\*</sup> Part IX. Camerman & Trotter (1963).

# Table 1. Measured and calculated structure factors

Unobserved reflexions, which are listed as 0.0, have threshold values in the ranges 4-7 for hk0 and 13-28 for 0kl reflexions

|                                         | k<br>2<br>4<br>6      | لد<br>0<br>0                            | F <sub>0</sub><br>*<br>139.8<br>22.4        | F <sub>c</sub><br>5.4<br>-142.5<br>11.5          | 2<br>2<br>2<br>2<br>2<br>2<br>2                                                             | 19<br>20<br>21<br>22<br>23       | 0<br>0<br>0<br>0 | 23.2<br>29.4<br>52.2<br>5.3<br>51.3         | - 25.6<br>32.9<br>51.5<br>- 1.8<br>57.6                                                     | հ<br>հ<br>հ<br>հ                                                                            | 20<br>21<br>22<br>23<br>24       | 0<br>0<br>0<br>0                        | 17.2<br>11.2<br>6.6<br>12.5<br>17.4  | 17.0<br>- 9.3<br>- 0.0<br>- 15.0<br>- 22.6   |
|-----------------------------------------|-----------------------|-----------------------------------------|---------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------|------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------------|
| 8<br>10<br>12<br>14<br>16<br>18         |                       |                                         | 82.5<br>28.1<br>48.4<br>13.8<br>71.7<br>0.0 | 76.8<br>- 26.5<br>- 56.8<br>- 0.0<br>72.7<br>1.6 | ଥ ର ର ର                                                                                     | 24<br>25<br>26<br>27<br>28<br>29 |                  | 21.5<br>19.9<br>15.9<br>18.9<br>0.0<br>24.3 | - 25.0<br>- 20.7<br>- 10.5<br>- 17.1<br>6.9<br>17.8                                         | 4<br>4<br>4<br>4<br>4<br>4                                                                  | 25<br>26<br>27<br>28<br>29<br>30 | 0<br>0<br>0<br>0<br>0                   | 0.0<br>6.1<br>16.5<br>10.0<br>9.2    | 13.5<br>0.6<br>11.1<br>19.8<br>- 6.2<br>6.1  |
| 20<br>22<br>24<br>26<br>28              |                       | 000000                                  | 63.6<br>13.3<br>68.1<br>18.9<br>30.1        | - 49.9<br>10.5<br>51.2<br>6.3<br>- 39.2          | ର ର ର ର <u>ଚ</u>                                                                            | 30<br>31<br>32<br>33<br>34       |                  | 0.0<br>17.8<br>0.0<br>19.3<br>5.8           | $ \begin{array}{r} - & 4.7 \\ 13.9 \\ - & 0.5 \\ - & 21.5 \\ 10.4 \\ - & 21.3 \end{array} $ | 4<br>4<br>4<br>4<br>4                                                                       | 31<br>32<br>33<br>34<br>35       |                                         | 10.2<br>14.2<br>13.0<br>6.3<br>0.0   | - 13.2<br>- 10.6<br>10.7<br>- 4.7<br>3.5     |
| 30<br>32<br>34<br>36<br>38<br>40        |                       | 00000                                   | 22.1<br>9.6<br>19.5<br>8.1<br>14.8          | 30.9<br>- 4.9<br>- 23.6<br>0.2<br>17.0           | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 36<br>37<br>38<br>39<br>40       |                  | 0.0<br>0.0<br>0.0<br>14.7<br>0.0            | - 4.3<br>1.9<br>- 0.9<br>4.3<br>8.2<br>- 4.0                                                | т<br>4<br>4<br>4<br>5                                                                       | 37<br>38<br>39<br>40<br>1        |                                         | 7.1<br>0.0<br>6.7<br>5.3<br>15.4     | - 4.7<br>0.3<br>- 6.1<br>- 7.1<br>14.5       |
| 42<br>1<br>2<br>3<br>4                  |                       | 0<br>0<br>0<br>0                        | 5.3<br>*<br>77.5<br>5.4                     | - 5.7<br>75.3<br>-132.8<br>- 84.7<br>2.8         | 2<br>3<br>3<br>3<br>3                                                                       | 41<br>1<br>2<br>3<br>4           | 0<br>0<br>0<br>0 | 0.0<br>76.2<br>52.5<br>70.0<br>18.4         | - 4.6<br>- 73.3<br>- 44.6<br>65.8<br>- 17.0                                                 | 5<br>5<br>5<br>5<br>5<br>5                                                                  | 2<br>3<br>4<br>5<br>6            | 0<br>0<br>0<br>0                        | 113.7<br>14.6<br>4.8<br>5.9<br>79.1  | 106.5<br>- 20.6<br>- 6.8<br>12.2<br>- 72.8   |
| 5<br>6<br>7<br>8<br>9                   |                       |                                         | 75.6<br>61.4<br>69.5<br>3.3<br>62.8         | - 81.6<br>- 50.7<br>76.6<br>- 7.2<br>58.1        | 3333                                                                                        | 5<br>6<br>7<br>8<br>9            |                  | 66.4<br>20.1<br>32.8<br>29.9<br>21.0        | 69.6<br>24.7<br>- 40.7<br>- 30.9<br>- 22.0                                                  | 5<br>5<br>5<br>5<br>5<br>5                                                                  | 7<br>8<br>9<br>10<br>11          |                                         | 21.5<br>5.0<br>0.0<br>76.3<br>0.0    | - 20.1<br>3.0<br>- 5.7<br>62.1<br>- 4.3      |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1<br>2<br>3<br>4<br>5 | 000000                                  | 3.8<br>4.0<br>80.3<br>50.5<br>13.9          | - 10.2<br>- 11.1<br>- 73.7<br>38.7<br>11.5       | 3<br>3<br>3<br>3<br>3<br>3                                                                  | 10<br>11<br>12<br>13<br>14<br>15 |                  | 57.8<br>19.9<br>62.1<br>65.6<br>33.0        | - 57.4<br>33.5<br>55.6<br>59.6<br>- 44.8                                                    | J<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                   | 12<br>13<br>14<br>15<br>16<br>17 |                                         | 5.6<br>77.0<br>0.0<br>6.0<br>5.3     | - 5.0<br>- 5.0<br>- 5.0<br>- 1.9             |
| נ<br>נ<br>2                             | .6<br>.7<br>.8<br>.9  | 00000                                   | 7.6<br>25.5<br>81.3<br>43.7<br>5.6          | 1.5<br>14.4<br>- 66.0<br>- 41.8<br>11.2          | 33333                                                                                       | 16<br>17<br>18<br>19<br>20       | 00000            | 0.0<br>15.3<br>0.0<br>14.8<br>0.0           | - 6.0<br>- 19.4<br>- 7.3<br>11.8<br>- 5.1                                                   | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                    | 18<br>19<br>20<br>21<br>22       | 000000                                  | 63.8<br>5.6<br>16.1<br>0.0<br>31.9   | 61.2<br>10.2<br>- 13.9<br>1.4<br>- 32.9      |
| 21<br>22<br>23<br>24<br>25<br>25        |                       | 000000000000000000000000000000000000000 | 50.8<br>8.8<br>6.4<br>21.7                  | - 23.7<br>51.2<br>19.6<br>- 12.1<br>23.2         | 2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                   | 22<br>23<br>24<br>25<br>26       | 000000           | 16.1<br>9.2<br>0.0<br>31.8                  | - 12.5<br>9.2<br>- 25.5                                                                     | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                              | 23<br>24<br>25<br>26<br>27<br>28 | 00000                                   | 0.0<br>0.0<br>29.9<br>0.0            | - 1.3<br>2.4<br>1.2<br>31.6<br>4.6           |
| 27<br>28<br>29<br>30<br>31              |                       |                                         | 0.0<br>17.7<br>8.5<br>10.0<br>23.3          | - 3.9<br>- 17.0<br>- 11.9<br>7.6<br>30.4         | 3<br>3<br>3<br>3<br>3                                                                       | 20<br>27<br>28<br>29<br>30<br>31 |                  | 7.8<br>0.0<br>21.2<br>12.1<br>22.0          | - 9.0<br>10.4<br>12.8<br>13.4<br>8.4<br>- 26.0                                              | ,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5,             | 20<br>29<br>30<br>31<br>32<br>33 | 000000                                  | 0.0<br>19.2<br>0.0<br>0.0<br>8.8     | - 26.1<br>- 26.1<br>- 0.8<br>2.6<br>- 6.2    |
|                                         | 23456                 |                                         | 0.0<br>9.7<br>11.2<br>11.8<br>8.9           | - 0.5<br>10.5<br>- 0.2<br>- 18.3<br>- 11.2       | 3333                                                                                        | 32<br>33<br>34<br>35<br>36       |                  | 9.7<br>10.6<br>7.3<br>8.3<br>0.0            | 7.6<br>- 11.2<br>- 8.3<br>11.6<br>- 1.9                                                     | 55555                                                                                       | 34<br>35<br>36<br>37<br>38       |                                         | 18.8<br>0.0<br>0.0<br>0.0<br>14.0    | 18.4<br>- 0.8<br>- 3.7<br>- 3.7<br>- 14.7    |
| 31<br>38<br>39<br>40<br>41              | )<br>)                | 000000000000000000000000000000000000000 | 5.2<br>6.3<br>5.4<br>0.0<br>4.4             | - 5.6<br>5.6<br>4.2<br>- 1.4<br>5.7              | 3333                                                                                        | 37<br>38<br>39<br>40<br>41       | 000000           | 6.9<br>6.5<br>0.0<br>7.3                    | $\begin{array}{r} 7.4 \\ 8.0 \\ - 4.8 \\ - 1.7 \\ - 7.4 \\ 62.8 \end{array}$                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>2<br>3<br>4            |                                         | 29.9<br>16.7<br>10.0<br>61.4<br>25.2 | 30.0<br>25.2<br>4.0<br>51.6<br>- 27.1        |
| 42<br>0<br>1<br>2<br>3<br>4             |                       |                                         | 131.0<br>16.4<br>5.6<br>28.7<br>5.6         | - 9.1<br>-148.4<br>9.8<br>- 8.8<br>- 26.3<br>3.4 | 4<br>4<br>4<br>4<br>4                                                                       | 1<br>2<br>3<br>4<br>5            | 0000000          | 92.2<br>19.9<br>4.6<br>32.6<br>51.4         | - 03.0<br>88.9<br>23.4<br>10.0<br>40.9<br>- 46.1                                            | 0<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                                        | 5<br>6<br>7<br>8<br>9<br>10      | 000000000000000000000000000000000000000 | 30.7<br>25.1<br>51.8<br>40.3<br>14.0 | - 37.0<br>- 26.7<br>- 42.1<br>44.0<br>13.1   |
| 56<br>78<br>9                           |                       | 0<br>0<br>0<br>0                        | 23.0<br>10.0<br>76.5<br>36.4<br>85.6        | 36.3<br>9.8<br>75.8<br>- 34.6<br>- 93.5          | և<br>Կ<br>Կ<br>Կ                                                                            | 6<br>7<br>8<br>9<br>10           | 0<br>0<br>0<br>0 | 5.3<br>9.3<br>60.6<br>31.4<br>6.7           | - 7.7<br>- 17.8<br>- 57.1<br>28.4<br>6.5                                                    | 3<br>6<br>6<br>6<br>6<br>6                                                                  | 11<br>12<br>13<br>14<br>15       |                                         | 36.1<br>38.3<br>17.2<br>16.9<br>17.9 | 27.9<br>- 34.3<br>- 24.3<br>- 22.3<br>- 20.5 |
|                                         | 0<br>1<br>2<br>3<br>4 | 0<br>0<br>0<br>0                        | 7.8<br>80.4<br>51.4<br>61.8<br>21.2         | - 3.7<br>- 81.1<br>- 37.2<br>57.7<br>- 17.5      | 4<br>4<br>4<br>4                                                                            | 11<br>12<br>13<br>14<br>15       |                  | 18.6<br>72.9<br>43.6<br>41.3<br>42.7        | 29.6<br>63.2<br>- 45.0<br>29.6<br>- 43.8                                                    | 6<br>6<br>6<br>6<br>6                                                                       | 16<br>17<br>18<br>19<br>20       | 0<br>0<br>0<br>0                        | 50.3<br>19.6<br>9.4<br>15.1<br>17.4  | 48.2<br>27.8<br>- 5.9<br>12.4<br>- 22.0      |
|                                         | 15<br>16<br>17<br>18  | 0<br>0<br>0                             | 72.6<br>12.1<br>77.9<br>0.0                 | 77.0<br>- 16.3<br>- 63.0<br>- <sup>4</sup> .9    | 4<br>4<br>4<br>4                                                                            | 16<br>17<br>18<br>19             | 0<br>0<br>0      | 44.1<br>14.1<br>0.0<br>5.3                  | - 30.6<br>25.9<br>11.8<br>- 0.9                                                             | 6<br>6<br>6<br>6                                                                            | 21<br>22<br>23<br>24             | 0<br>0<br>0                             | 6.0<br>6.1<br>16.4<br>15.0           | - 5.3<br>5.1<br>- 12.2<br>19.8               |

# J. TROTTER

# Table 1 (cont.)

| 66666666666666677777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 56739012345671234567890123456789012345678901234567890123450123456789000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9 <b>9</b> 9999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 34567890112114145454589224222222223301012345678901123456789222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0 <b>000000000000000000000000000000000000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.0<br>0.0<br>11.0<br>0.0<br>12.1<br>0.0<br>12.1<br>0.0<br>10.0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9.52<br>14.1.4<br>- 3.7.1<br>- 15.22<br>- 3.3.7.7<br>- 14.1.3<br>- 15.6.1<br>- 3.3.8.8<br>- 15.5.6.1<br>- 5.4.6.1<br>- 5.5.6.2<br>- 5.4.6.2<br>- 7.4.7.4<br>- 7.4.7.4<br>- 7.4.7.4<br>- 7.4.6.1.2<br>- 7.4.6.2<br>- 7.4.7.4<br>- 7.4.7.4 |
| хи й й й й й й й й й й й й й й й й й й й                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 2 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 903030608050800010501005054012150625013560805880283392007000843045270360095686220250<br>70808010070608000809080041220654992608850135608058802833920070008430452703663289<br>122906784926082501324445073324711800320003863103632819630092568622038250<br>12290678492608250135608055880028339200700088430452703860095686620250<br>122906784926549501334447042450733247118003200038631036338196300925686620250<br>2256885000050000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Table 1 (cont.)

|   |                                                                    |                                                | •                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---|--------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 234 25 0 1 2 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 | ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛         | $\begin{array}{c} 40.0\\ 0.0\\ 35.8\\ 0.0\\ 35.8\\ 0.0\\ 0.0\\ 1.1\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$ | $\begin{array}{c} 37.9\\ 9.5\\ -31.6\\ -16.3\\ -18.9\\ -31.5\\ -14.9\\ -13.5\\ -14.9\\ -13.5\\ -14.9\\ -13.5\\ -14.9\\ -13.5\\ -14.9\\ -112.5\\ -57.5\\ -14.2\\ -57.5\\ -14.2\\ -57.5\\ -112.5\\ -57.5\\ -112.5\\ -57.5\\ -112.5\\ -57.5\\ -112.5\\ -57.5\\ -112.5\\ -57.5\\ -122.2\\ -15.5\\ -122.2\\ -15.5\\ -122.2\\ -15.5\\ -122.2\\ -15.5\\ -122.2\\ -15.5\\ -122.2\\ -15.5\\ -122.2\\ -15.5\\ -122.2\\ -15.5\\ -122.2\\ -15.5\\ -122.2\\ -15.5\\ -122.2\\ -15.5\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2\\ -122.2$ |
|   | 0<br>1<br>2<br>3<br>4<br>5                                         | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 34.4<br>0.0<br>0.0<br>29.9                                                                        | $32.4 \\ 0.8 \\ - 5.7 \\ 5.1 \\ - 23.1 \\ - 4.9 \\ - 4.9 \\ - 4.9 \\ - 4.9 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ - 5.1 \\ $                |
|   | )<br>6<br>7<br>8<br>9                                              | 55555                                          | 0.0<br>0.0<br>35.5<br>19.0                                                                        | - 4.9<br>- 7.5<br>- 15.6<br>42.6<br>19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 10<br>11<br>12<br>13<br>14                                         | 55555                                          | 0.0<br>33.0<br>0.0<br>0.0                                                                         | 2.7<br>- 37.1<br>- 18.3<br>6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ) | 15<br>16                                                           | 5                                              | 0.0<br>30.2                                                                                       | - 12.4<br>39.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

with the calculated structure factors.  $330 \ hk0$  and  $84 \ 0kl$  reflexions were observed.

## Structure analysis

The coordinates of the arsenic atom were determined from c- and a-axis Patterson projections, and Fourier series summed with signs based on the As contribu-



Fig. 2. Electron-density projection along the *a* axis. Contours at intervals of 2 e.Å<sup>-2</sup>, except at the As atom, where contours above 10 are at intervals of 5 e.Å<sup>-2</sup>.

tions alone. From the resulting electron-density maps it was possible to determine the positions of all the carbon atoms. Refinement proceeded by successive Fourier and difference syntheses. The final measured and calculated structure factors are listed in Table 1; the discrepancy factors, for the observed reflexions, are R(hk0)=0.18, R(0kl)=0.15. The scattering factors used were those listed by Sagel (1958), with B(hk0)=4.5 Å<sup>2</sup> and B(0kl)=3.5 Å<sup>2</sup> for all the atoms. The final electron-density projections are shown in Figs. 1 and 2.

## Coordinates and molecular dimensions

The final positional parameters, x, y and z, are listed, as fractions of the unit cell edges, in Table 2. The standard deviations (Cruickshank, 1949) are  $\sigma(x) = \sigma(y) = \sigma(z) = 0.008$  Å for As and 0.05 Å for C.

Table 2. Final positional parameters, and deviations ( $\Delta$ ) from the aromatic planes

| $\operatorname{Atom}$ | x      | $\boldsymbol{y}$ | z      | ⊿ (Å)  |
|-----------------------|--------|------------------|--------|--------|
| $\mathbf{As}$         | 0.1467 | 0.1250           | 0.1893 | 0      |
| C(1)                  | 0.233  | 0.169            | 0.042  | Ô      |
| C(2)                  | 0.355  | 0.175            | 0.109  | -0.01  |
| C(3)                  | 0.416  | 0.207            | 0.006  | 0      |
| C(4)                  | 0.355  | 0.232            | -0.165 | +0.02  |
| C(5)                  | 0.233  | 0.225            | -0.236 | 0      |
| C(6)                  | 0.172  | 0.194            | -0.132 | -0.01  |
| C(7)                  | 0.421  | 0.148            | 0.302  | 0      |
| C(8)                  | 0.168  | 0.252            | -0.427 | -0.01  |
| C(9)                  | 0.224  | 0.078            | 0.049  | -0.01  |
| C(10)                 | 0.187  | 0.040            | 0.112  | -0.01  |
| C(11)                 | 0.243  | 0.007            | 0.020  | +0.01  |
| C(12)                 | 0.335  | 0.013            | -0.146 | 0      |
| C(13)                 | 0.371  | 0.051            | -0.212 | ŏ      |
| C(14)                 | 0.316  | 0.084            | -0.114 | -0.01  |
| C(15)                 | 0.086  | 0.033            | 0.295  | 0      |
| C(16)                 | 0.473  | 0.057            | -0.391 | Ō      |
| C(17)                 | -0.024 | 0.126            | 0.011  | + 0.01 |
| C(18)                 | -0.103 | 0.155            | 0.057  | -0.02  |
| C(19)                 | -0.223 | 0.157            | -0.059 | +0.01  |
| C(20)                 | -0.261 | 0.129            | -0.236 | 0      |
| C(21)                 | -0.180 | 0.099            | -0.290 | -0.01  |
| C(22)                 | -0.063 | 0.098            | -0.167 | 0      |
| C(23)                 | -0.061 | 0.186            | 0.255  | +0.01  |
| C(24)                 | -0.222 | 0.069            | -0.477 | +0.01  |
|                       |        |                  |        |        |

The best planes through the three *p*-xylyl groups have equations:

| I.   | C(1)-C(8):                                    |
|------|-----------------------------------------------|
|      | -0.2447X' + 0.6291Y + 0.7378Z' - 2.9076 = 0,  |
| II.  | C(9)-C(16):                                   |
|      | + 0.7280X' - 0.0007Y + 0.6855Z' - 1.7639 = 0, |
| III. | C(17)-C(24):                                  |
|      | -0.3388X' - 0.5939Y + 0.7297Z' + 2.3537 = 0,  |

where X', Y, Z' are coordinates in Å referred to orthogonal axes a', b and c. The deviations of the atoms from the appropriate planes are given in the last column of Table 2; the arsenic atom lies on all three planes.

| Table 3. | Bond | lengths | and | valency | angles |
|----------|------|---------|-----|---------|--------|
|----------|------|---------|-----|---------|--------|

|      | $A_{s-C(1)}$                       | 1.98 Å      |
|------|------------------------------------|-------------|
|      | $\Delta s = C(9)$                  | 1.99        |
|      | A = O(17)                          | 9.00        |
| _    | As = C(17)                         | 2.00        |
| Mea  | n As-C                             | 1·99 Å      |
|      | 18Car-Car                          | 1·35–1·46 Å |
| Mea  | n C <sub>ar</sub> –C <sub>ar</sub> | 1·39 Å      |
|      | 6Car-CH3                           | 1·51–1·60 Å |
| Mea  | n Car-CH <sub>3</sub>              | 1.55 Å      |
|      | C(1)-As- $C(9)$                    | 100·2°      |
|      | C(9) - As - C(17)                  | 102.3       |
|      | C(17)-As-C(1)                      | 102.7       |
| Mean | C-As-C                             | 102°        |
| Mean | As-C-C                             | 120°        |
| Mean | C-C-C                              | 120°        |
|      |                                    |             |

The bond lengths and valency angles in the molecule are given in Table 3. The closest intramolecular contacts between the *p*-xylyl groups have mean values:  $C_{ar}-C_{ar}=C_{ar}-CH_3=3\cdot5$  Å,  $H_{ar}-CH_3=3\cdot1$  Å (assuming that the aromatic hydrogen atoms lie on the ring diagonals with  $C-H=1\cdot08$  Å; no attempt was made to predict the positions of the methyl hydrogen atoms).

All the intermolecular contacts correspond to van der Waals interactions, the shortest being a  $C \cdots C$ separation of 3.42 Å.

### Discussion

Since the analysis has utilized only two-dimensional data, the bond distances and valency angles, par-

ticularly those involving only carbon, have not been measured very accurately, and only mean values are quoted in Table 3. The object of the analysis was the determination of the orientations of the p-xylyl groups, so no effort was made to determine the bond distances and angles more precisely by three-dimensional methods; they all appear to be quite normal. The orientation angles, which are calculated from mean planes, have been established more reliably.

The p-xylyl groups are planar, the plane of each also passing through the arsenic atom. The rotations of the rings from their positions in an 'ideal' model similar to that described for tri-p-tolylarsine (Trotter, 1963) (in this case with the assumption that the lone pair makes equal angles with the three As-C bonds), are 34.6°, 37.0° and 38.0° for rings I, II and III respectively. The differences between these values are not significant, so that each ring is rotated, about its As-C bond, through a mean angle of 37°. The rotations are all in the same sense and are such that the ortho methyl groups are displaced in the direction of the lone pair (Fig. 2). The minimum C · · · C and  $\mathbf{C} \cdots \mathbf{H}$  non-bonded distances are increased by these displacements to 3.5 Å and 3.1 Å, corresponding to normal van der Waals separations.

The rotations of the rings from their positions in the ideal model are equal within experimental error to the corresponding displacements in the *p*-tolyl derivative (36°). This indicates that the rotation which was required to relieve overcrowding between H atoms in the *p*-tolyl compound is sufficient also to relieve the more severe overcrowding involving the methyl group in the *p*-xylyl derivative.

The author is indebted to Dr W. R. Cullen for suggesting the problem, for the crystal sample and for much helpful discussion, to Dr F. R. Ahmed for kindly making available his IBM 1620 programs, to the staff of the University of British Columbia Computing Centre for assistance with the operation of the computer, and to the National Research Council of Canada and the President's Research Fund, University of British Columbia, for financial support.

### References

CAMERMAN, N. & TROTTER, J. (1963). Acta Cryst. 16, 922. CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65. SAGEL, K. (1958). Tabellen zur Röntgenstrukturanalyse. Berlin: Springer-Verlag.

TROTTER, J. (1963). Canad. J. Chem. 41, 14.